,产生本末倒置的结果。
在鱼雷体积一定的前提下增加航行距离,最好的办法就是使用动力更强、效率更好的推进器;由此“湿式热动力鱼雷”应运而生。
从20世纪初期开始,很多国家的鱼雷专家们都被动员起来去完成“湿式热动力鱼雷”的研究。可是,他们很快都一个接一个地放弃了对这种“梦幻式“武器的开发。
原因很简单——“湿式热动力鱼雷”的推进原理是气罐中的压缩氧气进入燃烧室,和燃料充分混合,因此也称为“氧气动力鱼雷”。而众所周知氧气是非常危险的气体,纯氧在狭小空间内引起的燃烧,很容易转变成致命的爆炸。
这种“火爆脾气“成了研制氧气鱼雷最大的技术难关。各国在研制氧气鱼雷的过程中都发生过严重的爆炸事故,让不少追逐超级鱼雷梦想的技术人员遗恨九泉。
许多国家在屡遭挫败后后放弃了对氧气鱼雷的开发,唯独东方的倭国执着地坚持着。不过他们同样陷入了和其他国家一样的困境——无法找到一种让纯氧在鱼雷内部安全燃烧的途径。
但是一次意外事故让苦恼的鱼雷技术人员看到了一丝转机。昭和6年(1931年)在横滨海上举行的观舰式上,水上飞机母舰“能登吕”号发生了汽油库爆炸事故,在研究相关预防措施时,发现使用汽油抗暴剂能收到很好的效果。这让鱼雷设计部门眼前一亮,在之前的氧气鱼雷实验中,一旦空气里混入超过25的氧气,就容易发生爆炸。如果加入汽油抗暴剂会怎样呢?
接下来他们发现了一个有趣的现象如果点燃氧气和雾化石油的混合气体,会发生爆炸;但如果点燃石油后再吹入纯氧,则不会爆炸。这一发现对研究部门来说是个天大的好消息。只要明白了这点,剩下的问题就不再是难题了。
昭和7年(1932年)初进行第一次实验,研究人员们先向燃烧室中输入空气,然后喷出雾状石油并点燃,接着吹入纯氧,虽然引起了猛烈地燃烧,但是并没诱发爆炸。这让研究人员们信心倍增。
在第二次实验,他们用50氧气和50空气(氧气和氮气的比例分别为635和355)混合成每平方厘米压强达195千克的压缩气体,输入燃烧室进行点火,然后再逐渐增加氧气纯度实现纯氧燃烧。这次燃烧室的结构强度也随着氧气含量的增加得到了加强,体积也增大了。实验竟出人意料的顺利,燃料燃烧稳定,没有发生爆炸。
在接下来的日子里,虽然遇到一些困难和挫折,不过技术人员们依旧努力完善了技术细节,例如向燃烧室里输送氧气和空气的混合气体的问题,他们在氧气罐边增加了一个小的启动燃烧室(体积大约有50升),氧气先在这里和空气混合,再进入主燃烧室和雾化的煤油混合燃烧。